OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Further Pure Mathematics 1

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Use formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that

$$
\begin{equation*}
\sum_{r=1}^{n} r(r+1)=\frac{1}{3} n(n+1)(n+2) \tag{5}
\end{equation*}
$$

2 The cubic equation $x^{3}-6 x^{2}+k x+10=0$ has roots $p-q, p$ and $p+q$, where q is positive.
(i) By considering the sum of the roots, find p.
(ii) Hence, by considering the product of the roots, find q.
(iii) Find the value of k.

3 The complex number $2+\mathrm{i}$ is denoted by z, and the complex conjugate of z is denoted by z^{*}.
(i) Express z^{2} in the form $x+\mathrm{i} y$, where x and y are real, showing clearly how you obtain your answer.
(ii) Show that $4 z-z^{2}$ simplifies to a real number, and verify that this real number is equal to $z z^{*}$.
(iii) Express $\frac{z+1}{z-1}$ in the form $x+\mathrm{i} y$, where x and y are real, showing clearly how you obtain your answer.

4 A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{n}=3^{2 n}-1
$$

(i) Write down the value of u_{1}.
(ii) Show that $u_{n+1}-u_{n}=8 \times 3^{2 n}$.
(iii) Hence prove by induction that each term of the sequence is a multiple of 8 .
(i) Show that

$$
\begin{equation*}
\frac{1}{2 r-1}-\frac{1}{2 r+1}=\frac{2}{4 r^{2}-1} . \tag{2}
\end{equation*}
$$

(ii) Hence find an expression in terms of n for

$$
\begin{equation*}
\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\ldots+\frac{2}{4 n^{2}-1} \tag{4}
\end{equation*}
$$

(iii) State the value of
(a) $\sum_{r=1}^{\infty} \frac{2}{4 r^{2}-1}$,
(b) $\sum_{r=n+1}^{\infty} \frac{2}{4 r^{2}-1}$.

6 In an Argand diagram, the variable point P represents the complex number $z=x+\mathrm{i} y$, and the fixed point A represents $a=4-3 \mathrm{i}$.
(i) Sketch an Argand diagram showing the position of A, and find $|a|$ and $\arg a$.
(ii) Given that $|z-a|=|a|$, sketch the locus of P on your Argand diagram.
(iii) Hence write down the non-zero value of z corresponding to a point on the locus for which
(a) the real part of z is zero,
(b) $\arg z=\arg a$.

7 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{rr}1 & -2 \\ 2 & 1\end{array}\right)$.
(i) Draw a diagram showing the unit square and its image under the transformation represented by A. [3]
(ii) The value of $\operatorname{det} \mathbf{A}$ is 5. Show clearly how this value relates to your diagram in part (i).

A represents a sequence of two elementary geometrical transformations, one of which is a rotation R.
(iii) Determine the angle of R, and describe the other transformation fully.
(iv) State the matrix that represents R, giving the elements in an exact form.
$\mathbf{8}$ The matrix \mathbf{M} is given by $\mathbf{M}=\left(\begin{array}{rrr}a & 2 & -1 \\ 2 & 3 & -1 \\ 2 & -1 & 1\end{array}\right)$, where a is a constant.
(i) Show that the determinant of \mathbf{M} is $2 a$.
(ii) Given that $a \neq 0$, find the inverse matrix \mathbf{M}^{-1}.
(iii) Hence or otherwise solve the simultaneous equations

$$
\begin{array}{r}
x+2 y-z=1, \\
2 x+3 y-z=2, \tag{3}\\
2 x-y+z=0 .
\end{array}
$$

(iv) Find the value of k for which the simultaneous equations

$$
\begin{array}{r}
2 y-z=k, \\
2 x+3 y-z=2, \\
2 x-y+z=0, \tag{3}
\end{array}
$$

have solutions.
(v) Do the equations in part (iv), with the value of k found, have a solution for which $x=z$? Justify your answer.

